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Abstract 

A probabilistic theory of triplet invariants is provided 
which may be used when pseudotranslations occur 
in the crystal structure. The final formula for estimat- 
ing a triplet phase invariant in centrosymmetric space 
groups is of Cochran-Woolfson type, in non- 
centrosymmetric space groups of von Mises type with 
maximum at 27r; single phases are determined via a 
special tangent formula. Thus the usual algorithms 
for phase expansion and refinement can be employed 
with few modifications. Parameters occur in the von 
.Mises and tangent formulae which are markedly 
different from the usual ones. In particular, the re- 
liability of each triplet depends not only on IEhl, lEd, 
[Eh-d, but also on the actual h, k, h - k  indices and 
on the nature of the pseudotranslations. An automatic 
phasing procedure and some applications are also 
described for the solution of superstructures and 
other structures showing pseudotranslations. 

Symbols and abbreviations 

Ch, ~ k , . . .  : phase of Eh, E k , . . . .  
Rh, R k , . . .  : moduli of Eh, E k , . . .  respectively. 
[trr]p, [o'r]q, [ t r , ] / v , . . . = ~  Z~, where Z/is the atomic 
number of the j th atom and the summation is made 
over the p, q, N , . . .  atoms. 
Ch = { ~h[ ~2]p + [ ~2]q} -1/2. 
Io: modified Bessel function of order zero. 
N: number of atoms in the cell. 
m: order of the space group. 
p: number of atoms (symmetry-equivalent included) 
whose positions are related by the pseudotrans- 
lations u. 
q: number of atoms (symmetry-equivalent included) 
whose positions are not related by the pseudotrans- 
lations u. 
tp : number of independent atoms which generate the 
p atoms when the pseudotranslations u and the sym- 
metry operators Cs, s = 1, 2 , . . . ,  m, are applied. 
tq : number of independent atoms which generate the 
q atoms by application of the symmetry operators 
Cs, s = l , 2 , . . . , m .  
ni: order of the pseudotranslation ui. 

* Present address: 'Rudjer Bo~kovi6' Institute, Bijeni~ka 54, 
41000 Zagreb, Yugoslavia. 

For other symbols see paper I (Cascarano, 
Giacovazzo & Lui6, 1985b). 

I. Introduction 

Since the pioneering works by Lipson & Woolfson 
(1952), Rogers & Wilson (1953) and Hauptman & 
Karle (1953) it was clear that rational dependence of 
atom coordinates should affect both the statistics of 
normalized structure factors and the reliability of 
triplet phase relationships. The mere renormalization 
procedure proposed by Hauptman & Karle (1959) to 
overcome problems imposed by systematically weak 
and strong reflections was unsuccessful in several 
cases. Indeed, it implies that triplets involving 
reflexions from weak reflexion sets are as reliable as 
triplets from strong sets, which is in contradiction 
with Sayre's equation (Gramlich, 1975). 

In some cases, it is relatively easy to determine the 
substructural unit: then the superstructure may be 
found by techniques particularly devoted to recover- 
ing the complete from the partial structure (Prick, 
Beurskens & Gould, 1983; Camalli, Giacovazzo & 
Spagna, 1985). However, the main aim of this paper 
is that of determining at the same time both the 
positions of the substructural and those of the super- 
structural atoms by taking into account the informa- 
tion (often available) on pseudotranslational sym- 
metry. Such information may be derived by different 
methods: we quote, among others, that described by 
Cascarano, Giacovazzo & Lui6 (1985a, b), which 
suggests, via a statistical analysis of the diffraction 
intensities, the possible presence of a pseudotransla- 
tional symmetry. The method finds the nature of 
pseudosymmetry and estimates the fraction p / N  of 
electrons suffering it. 

In recent years more insight into the problem of 
using triplet relationships was achieved after the con- 
tributions by Bibhme (1982, 1983), Fan Hai-fu, Yao 
Jia-xing, Main & Woolfson (1983), Gramlich (1984). 
A renormalization procedure was combined with 
suitable probabilistic considerations in order to pro- 
vide better estimates of triplet invariants. However, 
some theoretical problems concerning the probabilis- 
tic estimation of triplet invariants when pseudo- 
translational symmetry is present still remained 
unsolved. 

In this paper we describe a probabilistic theory of 
triplet relationships which explicitly takes into 
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account pseudotranslational symmetry. More pre- 
cisely, we will calculate the conditional probability 
distribution of a phase ~Ph given ~Pk, ~ - k ,  ~Pk, 
~ -k ,  • • •, when no correlation exists between atomic 
positions not related by symmetry or by pseudo- 
translations. 

In accordance with the above observations, the first 
step of the mathematical approach will be the calcula- 
tions of the joint probability distribution function 
P(Rh, Rk, Rh--k, eh, ~Pk, ~Ph-k) by taking into account: 
(1) the specific algebraic form of the E's,  which is 
strongly dependent on the pseudotranslational sym- 
metry, and (2) the reduced number of primitive ran- 
dom variables. Indeed, now only the tp + to atomic 
positions constitute the primitive independent ran- 
dom variables. According to paper I we write 

~h = ~'j(h)gAh) (1) 
j = l  

where 

~j(h)=fj(h)/Ieh(Oth~p-l-~q)] 1/2. 
The normalizing factor in (1) is 

where 

ah  = ( n l n 2 n 3  • • .)Th/m 
and Yh is the number of times for which the algebraic 
congruences 

hR~ui - - -0 (modl )  for i --1, 2, 3, . . . 

are simultaneously satisfied when s varies from 1 to 
m. If Th = 0 we say that Fh is a superstructure reflexion: 
then ([Fhl2) = e ~q. Otherwise Fh is a substructure 
reflexion. The maximum value of 3/ is m: con- 
sequently the maximum value of a is nln2n3 . . . .  

For j < tp [see equation (I.4a)], 

m [l~(sinn,~rhR~u,~ 
gj(h) = ~ exp 2~'ihC~rj \ ~m~rhRsu----'~- / 

s=1 

x exp 21rihC,½(ni- 1)u~J ; 

for tp <j <-tp + tq [see equation (I.4b)] 

gj(h) = ~ exp 2~rihC,rj. 

The index i varies over the independent pseudo- 
translations. 

The mathematical model described above may be 
applied both when a defined substructure exists and 
when pseudotranslational symmetry does not give 
rise to a substructure (Cascarano, Giacovazzo & Lui6, 
1985a). On the other hand, real substructures often 
do not exactly comply with.our model. For example, 

it may occur that atoms related by pseudotransla- 
tional symmetry are not exactly located or are of 
different nature. Such situations involve a correlation 
between the superstructure and the substructure not 
taken into account by our model: dealing with these 
cases requires the modification of the theoretical 
background assumed in this paper. The effects of the 
correlation between superstructure and substructure 
on triplet estimation will be examined in a further 
paper. We only show here that our mathematical 
model provides probabilistic triplet estimations which 
can be profitably used in direct procedures for the 
solution of several real structures with superstructure 
effects. 

For the sake of brevity we do not give a full account 
of our probabilistic approach: the reader is referred 
to a recent book (Giacovazzo, 1980) for the basic 
ideas. We give in §§ 2 and 3 only the final formulae 
for the cs and for the ncs cases respectively. At first 
sight they may appear rather unexpected. For this 
reason a short Appendix (Appendix A) will help the 
reader to justify our theoretical results. It is 
worthwhile mentioning that they do not hold for those 
special triplets described by Giacovazzo (1980, pp. 
286-287) and by Pontenagel & Krabbendam (1983), 
for which supplementary algebraic considerations are 
needed. 

2. Centrosymmetric space groups: the conditional 
probability that EhEkEh-k is positive given RhRkRh-k 
Denote by P(EhEkEh_k > 0) the conditional probabil- 
ity that the product EhEkEh-k is positive given 
RhRkRh-k. On the assumption that all the atoms have 
the same unitary scattering factor we obtain (see 
Appendix A) 

P(EhEkEh_k > 0) " 0 " 5 + 0 " 5  tanh Ah, k (2) 

where 
- 1 / 2  

Ah,k= RhRkRh-kNh,k , 

N1,2 C.Ck k{mlC 31,  " h k 
s = l  

(3) 

and 

sin n:rhRsui sin n:rkRsui 

%'i = sin rrhRsui sin 7rkRsui 

sin n:r(h-k)R~ui × 
sin 7r(h - k)Rsui " 

If p = 0 (no pseudotranslation occurs), then q = N 
and 

Nh, k = [ 0"2] 3 / [  0"3] 2 .  

Thus (2) reduces to the well known Cochran- 
Woolfson formula. 
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If all the reflexions h, k, h - k  are superstructure 
reflexions then (I-Ii r~,~)= 0 for every s, and Nh-k is 
given by 

(Nh,k)o 3 2 (4) = [cr2]q/[(r3]q'- q. 

Thus the reliability of a triplet constituted by super- 
structure reflexions appears to be inversely propor- 
tional to ql/2 and not to N 1/2. 

It may be worth mentioning that triplets constituted 
by superstructure reflexions may not always be found. 
For example, when a pseudotranslation of order 2 
occurs, the superstructure reflexion h satisfies the 
condition 

h u ~  0(rood 1) and 2hu-= 0(rood 1). 

Thus hu is a semi-integer value. If h and k are super- 
structure reflexions, ( h - k ) u  is the sum of two semi- 
integer values, that is to say, ( h - k )  must be a sub- 
structure reflexion. 

If only one of h, k, h -  k is a substructure reflexion 
(e.g. the reflexion h), then ([I~ r~,~) = 0 for every s, and 
Nh,k is given by 

2 2 (Nh,k)l = {ah[(rz]p + [(r2]q}[ ~r2] J[(r3] q. (5) 

(Nh.k)l is larger than (Nh.k)0. In order to have a simple 
numerical insight, let us assume that all the atoms 
are of the same type. Then (Nh,k)l~--(a~p+q)>-- 
(Nh,k)0- 

If pseudotranslation symmetry gives rise to a sub- 
cell, triplets constituted of two substructure and one 
superstructure reflexions cannot be found. Indeed, if 
h and k correspond to the reciprocal lattice of the 
subcell, h - k  will also correspond to points of the 
same lattice. On the other hand, if pseudotransla- 
tional symmetry does not produce a subcell (Cas- 
carano, Giacovazzo & Luir, 1985a), 'sub-sub-super '  
triplets can exist (this case has never been considered 
in previous literature). As an example, let h=417,  
k = 382 and h - k  = 795" if u = a/4 in P4, then h and 
k are substructure reflexions with a ,  = a~, = 2 while 
h - k  is a superstructure reflexion. 

In general, if h and k are substructure reflexions 
and h - k  is a superstructure reflexion then 

(Nh,k) 2-~ ( (~h[ (]r2]p + [ 0r2] q ) ( C~k[ 0r2]p -{- [ (]r2] q ) 

x [o2],,I[o',]~. (6) 

It is easy to see that (Nh.k)2-- > (Nh,k)~ >-- (Nh,k)o. If all 
the atoms are of the same type then 

( Nh,k)2 "" (o~kp "k" q)(akp+ q)/q, 

which is larger than (Nh,k)l because (alp + q) /q  > 1, 
unless p = 0. 

If h, k, h -  k are all substructure reflexions then the 
complete equation (3) has to be calculated, in which 
the factor ~ ~ (I]~ Ts, i/n~) is in general non-vanishing. 
It should be stressed that zs,~ is a non-negative 
quantity. 

Indeed: (1) sin n~rry/sin wy=0  if y is not an 
integral value [here y is one of hRsu~, kR~u~, 
(h-k)Rsui ] ;  (2) if n~ is odd then sin niTry/sin cry = ni 
for integral values of y; (3) if n~ is even then 
sin n(rry/sin Try equals n~ for even values of y, and it 
equals -n~ for odd values of y. In both cases %,~ is 
again positive because none or two of hRsui, kRsn~, 
(h-k)R~ui can be odd. 

It may be written in a way suitable for computer 
calculations [see equation (A.3)] 

~-- / ' / 1 / ' / 2 / ' / 3  . . . )  

s = l  

where/3 is the number of times for which 

hR~ul = 0(mod 1), 

hRsu2 = 0(mod 1), 

hR~u3 - 0(mod 1 ) . . .  

kRsul = 0(mod 1), 

kRsu2 = 0(mod 1), 

kR,u 3 = 0(mod 1 ) . . .  

(h - k)R~ul = 0(mod 1 ), 

( h -  k)Rsu2 = 0(mod 1), 

( h -  k)R~u3- 0(mod 1 ) . . .  

(7) 

are simultaneously satisfied when s varies from 1 to 
m. Obviously,/3 <-m" furthermore,/3 cannot exceed 
the minimum among y, ,  yk, Yh-k (see paper I). In 
conclusion, 

( Nh,k)3 = { (ah[ 0"2]. + [ o'2],l)(ak[ oh]p + [ Crz]q) 

x (,~._~[ ~2]~ + [ ~2]q)} 

x {(/3/m)[o'3]p(n~n~n~...) + [o-3]q} -2. (8) 

It may be shown (see Appendix B) that (Nh,k)3-~ 
(Nh,k)2 according to different situations. 

The numerical values of (Nh,k)i suggest which type 
of triplet relationships will have a marginal or a 
central role (see § 4) in direct procedures for phase 
solution. For equal-atom structures (3) reduces to 

N-112  h,k = [ ( a h p +  q)(akp+ q)(a,_~p+ q)]-,/2 

x (1 /m)p F. r~,,/ni +q . (9) 
s = l  

3. Non-centrosymmetric space groups: the conditional 
probability of ~h,k = ~Ph-- ~Pk-- ~Ph-k given Rh, Rk, Rh-k 

Under the same conditions stated in § 2 we obtain 
for the ncs space groups the relation 

P(q~h,k)--~[27rI0(2Ah,k)]-' exp (2Ah.k cos (bh,k). (10) 

Equation (10) is a unimodal von Mises function, with 
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its maximum at ~h.k = 0. In order to obtain more 
insight into the numerical values involved in (2) or 
(10) we calculate in a few cases some parameters for 
an equal-atom P4 random structure, having tp = 5, 
tq = 15, u = a/4. Thenp = 80, q = 60, N = 140. Accord- 
ing to paper I the substructure reflexions hkl have h 
or k congruent to zero modulo 4. If superstructure 
effects are not taken into account in the normalization 
process, we would obtain the pseudonormalized 
structure factors E '  and the following expected 
averages: 

(I E~,12)s.p- [ o , 2 ] q / [ o , : ] N  = ql N = 0.43 

(IE~12)h=4, = 1-57 

E '  2\ (I h /h=4n, k=4n--2"71 
E r2 (I hi )h-~k=O = 2"71" 

Our normalization program (described in paper I) 
finds (IE~12)sub = 1-76, from which p and q are esti- 
mated to be 83 and 57 respectively. 

The true normalized structure factors E can be 
obtained via (I.22), or, more simply, by 

Eh= E~{[O'2]N/(Olh[O'2]p-~[or2]q)} l /2  , (11) 

which, in our example, reduces to 

Eh = E ~[ N /  ( o~hp + q)]1/2. 

In Table 1 the true Nh,k values [calculated via (9)] 
are shown for the various types of triplets; the values 
calculated by our program are in parentheses (the 
experimental estimates for p and q have been used). 

In Table 2 some pseudonormalized E '  and the 
corresponding normalized structure factors E are 
shown. The values of Ah,I according to Cochran's 
(1955) formula and to our procedure are given for 
each triplet. The tables show how different the relia- 
bility of the various triplets may be according to the 
two procedures. In particular the value N = 140 to 
be used in Cochran's formula is replaced in our 
procedure (see Table 1) by 22, 31, 38, 60, 220, 380, 
807 according to the type of triplet. Clearly, triplets 
constituted by 3, 1 or 0 substructure reflexions may 
play an important role in the phasing procedures, 
while triplets constituted by only two substructure 
reflexions have a marginal role. 

Besides space-group symmetry and pseudotransla- 
tional symmetry p and q values are also important 
for defining the specific role of a given type of triplet 
in the crystal-structure-determination process. Let us 
consider as an example a random P4 structure with 
tp = 15, tq ---- 5, U = a/4: then p = 240, q = 20, N = 260. 
In Table 3 the values of Nn,k [calculated via (9)] are 
shown for the various types of triplets (the values 
calculated by our program in parentheses). From 
comparison of Table 3 with Table 1 it is easily seen 
that 'super-super-super '  triplets are the most impor- 
tant ones. Indeed, the eight triplets with largest values 

Table 1. Values Nh,k for  the various types o f  triplets in 
a P4 randomly generated structure with tp = 5, tq = 15, 

u = a / 4  

In the first column the parity of the reflexions involved in each 
triplet is given: f stands for 'modulo  4', n stands for 'non-modulo  
4', I is either. In the second column the various values of  Nh,k are 
given (with the values calculated by our program in parentheses). 

Type of  triplet N 

(fnl), (fnl), (fnl) 22 (21) 
(ffl), (ffl), (ffl) 31 (31) 
(fnl), (fnl), (ffl) 38 (37) 

(nnl), (nnl), (nnl) 60 (57) 
(nnl), (nnl), (nil) 220 (223) 
(nnl), (nnl), (ffl) 380 (390) 
(nnl), (fnl), (fnl) 807 (879) 

Table 2. Some data for  a P4 randomly generated struc- 
ture with tp = 5, tq = 15, u = a/4 

E'  denotes a structure factor normalized without taking the 
pseudotranslation effects into account (pseudonormalized struc- 
ture factor), E is the correct normalized structure factor. 2A'(h, k, 
h - k) = 2[ E~E~,E~_k] / N U2 is the reliability factor of  a triplet when 
pseudotranslation effects are not taken into account,  2A(h, k, 
h - k )  = 2]EhEkEh_k]/~rl/2 is the corresponding parameter  in our / ~ h , k  
formula (10). 

hl h2 h3 h4 h5 h6 h7 h8 
(412) (883) (12,9,5) (345) (753) (231) (524) (93ff.) 

E~, 2"0 3"0 3"5 2.7 0"9 1-2 1"0 1"3 
o~ h 2 4 2 2 0 0 0 0 
E h 1"6 1"8 2"8 2"2 1-4 1"8 1"5 2-0 

2A'(hl, h2, h3) = 3"5 2A(hl, h2, h3) = 2"6 
2A'(hl, h4, hs) = 0"8 2A(hl, h4, hs) = 0-3 
2A'(hl, hT, hs) = 0"66, 2A(hl, hT, hs) = 0"97 
2A'(hs, h6, hT) = 0.18, 2A(hs, h6, hT) = 0.98 

of A(h,  k) are all of type 'super-super-super '  while 
the largest value of A(h, k) for 'sub-sub-sub'  is 2.71 
(74 in the list). 

Two additional points deserve to be stressed. 
Renormalization of structure factors proposed by 
Hauptman & Karle (1959) to remove in the phasing 
procedures problems imposed by systematically 
strong and weak reflexions does exploit the indirect 
information contained in the statistics of the structure 
factors, but on the other hand it ignores the usefulness 
of knowing the structural regularities causing those 
statistical effects. In the light of the above results such 
a procedure appears too drastic and rigid. For 
example, it reduces too much the reliability of the 
'sub-sub-sub'  triplets and overestimates by different 
amounts the other types of triplet. According to our 
theory, the information obtained from the analysis of 
statistics is used, not only for renormalizing structure 
factors, but also for evaluating suitable values of Nh,k 
for each type of triplet. For example, for 'sub-sub- 
sub' triplets, Nh.k < N, so that those triplets are esti- 
mated to be more reliable than via the mere normaliz- 
ation process. Support for these conclusions is pro- 
vided in Appendix C, where the Sayre (1952) equation 
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Table 3. Values Nh,k for the various types of  triplets in 
a P4 randomly generated structure, with tp = 15, tq = 5, 

u = a / 4  

For symbols see caption to Table 1. 

Type of triplet N 
(fnl), (fnl), (fnl) 33 (33) 
(ffl), (ffl), (ffl) 63 (63) 
(fnl), (fnl), (ffl) 65 (65) 

( nnl), ( nnl), ( nnl) 20 (21) 
(nnt), (nnl), (nil) 500 (449) 
(nnl), (nnl), (ffl) 980 (977) 
(nnl), (fnl), (fnl) 12 500 (11 738) 

is briefly discussed and compared with approaches 
by other authors. 

The above remarks are the starting point for a more 
general proposition: when a priori information is 
available, it must be used in the normalization 
process, in the theory aiming at estimating phase 
relationships, and in the phasing process, otherwise 
systematic errors or other drawbacks will be produced 
during the procedure. 

The second additional point to stress is that the 
mathematical approach described above cannot be 
applied rigorously when tp or tq are small numbers 
(in some structures tp = 1). Situations in which the 
number of independent random variables is small but 
direct methods are successful are not infrequent: for 
example, very small structures or structures partially 
known. 

The usual probabilistic theories also proved to be 
useful in these cases; therefore we can expect that 
small values of tp or tq are disturbing but not critical 
parameters for the theory developed in the present 
paper. 

4. The conditional distribution of ~h given R h and more 
pairs ~k, ~h--k, Rk, Rh--k 

In the cs space groups we obtain 

P( Eh > 0) -'- 0-5 + 0-5 tanh [ Rh 2 ( S~.~/, 2) Ek,Eh-kj] 
(12) 

and, in ncs space groups, 

P(9~h)=[2~Io(Qh)] -1 exp[QhCOS(9~h--0h)], (13) 

where 

Qh = {[~ 2Ah,kj COS (~kj + ~h-kj)] 2 

+ [ 2  2Ah,k, sin ( ~ k +  ( ~ h - k , )  2 , (14) 

2 Ah,kj sin (¢k, + ch-kj) 
_ J  

tan 0h - 2  Ah.kj COS (q~kj + q:~-kj)" 
J 

(15) 

It is easily seen that the usual algorithms for phase 

expansion and refinement need only a few 
modifications for handling superstructure problems. 

5. Real structures: possible sources of ambiguity and 
experimental results 

The presence of heavy atoms in a crystal structure is 
not a factor limiting the effectiveness of the renor- 
malization procedure described in paper I. Indeed, 
the process depends on the ratios Y~p/Y'.N and ~q/Y.N 
(scattering powers of the q and p atoms/scattering 
power of the complete crystal structure) which in 
principle are statistically estimable with identical 
accuracy no matter if heavy atoms occur. However, 
if some heavy atoms are present, the statistical analy- 
sis of intensities described in paper I does not provide 
the species and the number of atoms suffering 
pseudotranslation, but only the ratio Y.q/,Y.N which 
reduces to q / N  only if all atoms are equal. In this 
case (and only in this case) (3) reduces to (9), which 
is therefore computable via the statistical analysis of 
diffraction data. 

In general 2q/Y.N and q~ N do not coincide. 
In order to give an example, let us suppose that 

the crystal structure contains p atoms with atomic 
number Zp and q atoms with atomic number Zq. 
According to (I.13), we write 

(IE~,]2) (ahpZ2p+ 2 2 = qZq) / (pZp+qZ~) .  (16) 

Since p = ( N  - q), (16) becomes 

q ([ E~,]2) _ ah 
N (IE~,]2) ,2 2 2 2 2 -<lEvi >(ZJZ~)-~+(Zq/Z~) 

(I E ~,1 :)  - ~, 
(17) ((E~I 2) 1)[1 2 2 , - - ( Z q / Z p ) ] +  1--OZh 

which reduces to equation (I.15) only if Zq = Z e. 
For p = 4 atoms with Z e = 40 and q = 60 with Zq = 6 

the statistical analysis of diffraction data via equation 
(I.16) should estimate q /N~-0 .25 ,  so that p and q 
should be assumed proportional to 48 and 16 respec- 
tively, in evident contrast with reality. 

The above is a dramatic example in which the 
scattering power of the q atoms constitutes a small 
percentage of the total scattering but the number of 
q atoms is a large percentage of the total number. A 
converse example may easily be given. The obvious 
consequence is that q~ N or p~ N or p~ q have always 
to be interpreted as ratios between scattering powers 
and not between numbers of atoms. 

The situation becomes more complicated when the 
p atoms as well as the q atoms are not of the same 
type. Indeed: 

(a) If pseudotranslational symmetry relates atoms 
of different type then the p atoms contribute to both 
Y~p and Y'.q (that is to say, to both substructure and 
superstructure reflexions). The first contribution 
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arises from those electrons of the p atoms which do 
overlap because of pseudotranslations (the maximum 
overlap cannot exceed the lightest atom). The contri- 
bution to Y~q arises from those electrons of the p atoms 
which do not satisfy pseudotranslational symmetry. 
Thus, p q ( r ) = p ( r ) - p p ( r )  will contain, besides the q 
atoms, also some electron residuals of the p atoms 
(see Fig. 1). Then the overall number of atomic peaks 
in pq(r) is larger than N - p .  Underestimation of this 
effect will produce overestimation of ' super-super-  
super' and ' super-super-sub '  triplets with respect to 
the others. 

(b) Statistical underestimation of [tr2]p/[tr2]N is 
equivalent to partially neglecting information con- 
tained in pseudotranslational symmetry and causes 
some overestimation of ' sub-sub-sub '  triplets with 
respect to others. However, overestimation of 
[or2]p/[Or2] N is more dangerous (see also Bohme, 
1982) because it introduces into the mathematical 
model atoms with negative scattering factors (see Fig. 
1). In this case, triplets of type 'super-super-super '  
are overestimated with respect to ' super-super-sub '  
which in their turn are overestimated with respect to 
' sub-sub-sub '  triplets. 

(c) [tra]p and [tra]q are not accessible via statistical 
analysis so that Nh,k is not exactly computable via 
(3). Therefore, in the practical procedure, we use the 
approximate equation (9) instead of (3). 

In spite of the above limitations our approach 
works well in several cases. We have applied it to the 
five crystal structures described in Table 4. The first 
three of them were originally solved via ad hoc 

a/3 
/ / 

A^ ^A ^ A ^A,  

A A A 

AA A A  A , A A 

A A A A 

Pq 

, A A , A ~/ A , p~, 

Fig. 1. p is the unidimensional electron density constituted by 
triangular 'atoms'. The pseudotranslational symmetry u = a/3 
relates atoms of different type: pp is the electron density suffering 
pseudotranslational symmetry, pq = p - pp is the complementary 
electron distribution, p~, is a wrong estimate of pp (possibly 
suggested by statistical analysis): in this case p~ contains 'nega- 
tive' atoms. 

Table4. Test structures: space group, the main 
pseudotranslational vector (u) and the estimated per- 
centages o f  electrons (e%) suffering pseudotransla- 

tional symmetry 

Crystal structure Space group u e% 

Freieslebenite* P2t/a Z = 4  a/2+b/3 0.51 
PbAgSbS3 

Mesolitet Fdd2 Z =  16 a/3 0-66 
Na2Ca2AI6Si903o.8H20 

FerriC: P21/n Z = 4  (a+b)/2 0.55 
Fe2(SO4)3 

Nist§ PI Z = 2  a/2 0.37 
[N(C4Hg)4][Ni(C3Ss)2] 

Fega I P63/mmc Z = 2  c/3 0-44 
Fe2Ga2S5 

* Ito & Nowacki (1974). 
t Adiwidjaja (1972). 
¢ Chfistidis & Rentzepefis (1975). 
§ Unpublished. 
i Nguyen-Huy-Dung et al. (1986). Unpublished. 

methods. Nist can also be routinely solved without 
introducing information on pseudotranslational sym- 
metry. The last one was M U L T A N  resistant and has 
been routinely solved by the present method. In all 
cases our procedure revealed for each crystal structure 
a large ~percentage of atoms which, via the usual 
Fourier methods, led to the complete structures. 

6. Concluding remarks 

The mathematical model introduced in paper I has 
been applied to the estimation of triplet invariants. 
The approach is able to produce for non-centrosym- 
metric space groups a unique distribution for the 
triplet phases which is of von Mises type and whose 
concentration parameter changes according to the 
type of triplet and to the pseudotranslational sym- 
metry. A mathematical model cannot take into 
account every type of pseudotranslational symmetry: 
thus in principle our procedure may be successful in 
some cases (when the actual crystal structure complies 
well with the model) and may be unsuccessful in 
others. In spite of this limitation the method described 
in this paper seems rather efficient: indeed, it worked 
on real crystal structures which do not fully comply 
with the mathematical model both because atoms 
related by pseudotranslational symmetry are not 
equal and because they are not exactly located. 

The procedure has been introduced into the SIR 
package (Cascarano, Giacovazzo, Burla, Nunzi, 
Polidori, Camalli, Spagna & Viterbo, 1985). The 
macro-instruction PSEUDO compels the normaliz- 
ation program to carry out the statistical analysis of 
diffraction intensities, in order to recognize the 
pseudotranslational symmetry and to estimate p and 
q parameters. The information so obtained, together 
with renormalized structure factors, is passed to the 
22 routine, which calculates for each triplet the con- 
centration parameter Ah.k. In its turn this parameter 
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is used in the C O N V E R G E N C E  procedure for origin 
and enantiomorph definition and in the tangent 
process. 

One of us (ML) is indebted to ICTP (International 
Centre for Theoretical Physics, Programme for Train- 
ing and Research in Italian Laboratories, Trieste, 
Italy) for financial support during a three-month stay 
at the University of Bad. 

APPENDIX A 

In accordance with equation (1), 

EhEkEh-~ = ~ tPh(h)gj,(h) )-" ~/,j2(k)gj2(k) 
J l  = 1 J2 = 1 

fp + tq 

x ~" d/j3(h+k)gj3(h+k). 
j3 = 1 

If no correlation exists among the tp + to primitive 
random variables rj, then 

tp + tq 

(EhEkE~-~= ~ (~bj(h)~b~(k)~bj(h+k) 
j = l  

If we denote 

x gj(h)gj(k)gj(h + k)). (A.1) 

sin (n:rhR#i)  
S(h, s, i )=  

sin (zrhRsui) ' 

v(h, s) = exp {2~rihC,[r s +½(nl -  1)ul +½(n2-1)u2 

+½(n3-1)u3+. . . ]} ,  

then 

(EhEkE~-~O = Y, q,/h)~b(k)q,j(h+k) 
j = l  

x (  ~ [S(h ,s , ,1)S(h ,  sx,2) 
S l = l  

×S(h, Sl, 3 ) . . . ]v (h ,  sl) 
m 

x E [S(k, s2,1)S(k,  s2,2) 
s 2 =  1 

x S(k, s2, 3 ) . . . ]  v(k, s2) 

x ~ [S(h+k,  s3 ,1)S(h+k,  s3,2) 
s3 = 1 

x S(h+k ,  s3, 3 ) . . . I v ( h +  k, s3)) 

tp~tq 

+ ~S (h) ~bj (k) ~bj(h + k) 
\ j = t p + l  

m 
x ~ exp 2rri[h(Cs, - Cs3)rj 

S1,S2,$3 = 1 

+ k(C,~- C,~)rj]). (A.2) 

Non-vanishing contributions to (EhEkEh--~) from the 
right-hand side of (A.2) occur if 

( v(h, s,) v(k, s:) v(h + k, s3)) # O. 

Under the conditions specified in § 1, that requires 
S 1 = S 2 = S 3 . Therefore, (A.2) becomes 

( Eh Ek E h-4-~) 

= [ ~ ,  ~bj (h) Oj (k) ~bj (h +--k) ] 
L j  = 1 

x ~. [S(h,s,  1)S(h,s ,E)S(h,s ,  3 ) . . .  
s = l  

x S(k, s, 1)S(k,s ,  2)S(k ,s ,  3 ) . . .  

x S (h+k ,  s, 1)S(h+ k, s, 2 )S(h+k,  s, 3 ) . . . ]  
tp + lq 

+ Y, m~bj(h)~bj(k)~bj(h+k) 
j = t p + l  

L . j = I  s = l  

tp + tq 

+ ~ mSj(h)$j(k)~bj(h+k), 
j =  tp+l 

where 

Since 

¢(s, i)= S(h, s, i)S(k, s, i )S(h+k,  s, i). 

p = mtp(nln2n3...),  q = mtq, 

then 

(EnEkEv~-~)= m $j(h) $j(k) Sj(h + k) 

x [n,,s i,1 
s = l rl i _1 

N 

+ ~ ~bs(h)d/s(k)Oj(h+k), 
j = p + l  

from which (3) is obtained. 

(A.3) 

APPENDIX B 

Suppose all atoms are equal. Then 

( Nh,k)3 -> (Nn,k)2 

if 

(C~h+kP + q)/ {(/3 / m)p(n21n~n] . . .) + q}2 >_ q-l,  

which is true if 

p(p82+2qS--ah+kq)<--O, (B.1) 

where 6 2 2 2 = fl(nln2na . . .)/ m. 
Relation (B.1) may be studied as a function of 

(that is to say, p and q are fixed while the space group 
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and the pseudotranslations are allowed to vary) or 
as a function of p (the space group and the 
pseudotranslations are given while p is the variable). 
In both c a s e s  ( N h , k )  3 -- ( N h , k )  2 if p = 0. 

In the first case, (B.1) is an equality if 8 = 81 or 82, 
where 

8~ = { - q  - [ q( q + ah+kP)]//2}/p, 

82 = { - q  + [ q(q + ~h+kP) ],/2}/p. 

8 2 is the unique root allowed for 8 (indeed 8 > 0). 
Therefore (Nh,k)3 > (Nh,k)2 if 8 < 82, (Nb,k)3 -- (Nh,k)2 
if 8 >-- 82. In the second case (Nh,k)3 <>-- (Nh,k)2 if p ><-- 
q(ah+k--28)/82. If 2 8 > a h + k  then (Nh,k)3<(Nh,k)2 
always. 

APPENDIX C 

Suppose for an equal-atom structure that the electron 
density p(r) may be expressed as the sum of the 
substructure p~,(r), relative to p atoms in the cell, and 
of pq(r), relative to q atoms not related by 
pseudotranslations: 

p(r) = pp(r) + pq(r). (C.1) 

For the sake of simplicity let us deal with the P1 case. 
We write 

nt--I n2--I 

pp(r) = Pip(r) * E 8 ( r -  b, lUl) * E 8 ( r -  ~'2u2) * . . . ,  
V l =0 v2=0 

(C.2) 

where ptp(r) is the structure corresponding to the tp 
independent atoms, * is the symbol of convolution, 
Us, u2 , . . ,  are the independent pseudotranslations in 
the cell, and 8 is the Dirac delta function. The Fourier 
transform of (C. 1) gives 

Fh = T[pp(r)]+ T[pq(r)] 
[- nt--1 

= T[p,p(r)] T L E 8(r-/JlUl) 
~,1=0 

n2--1 1 
* ~ 8 ( r - v 2 u 2 ) * . . .  +(Fh)q 

1'2=0 

sin n : rhu~  
x sin "rrhu, I + (Fh)q 

=(F0~+(F0~ 
which agrees with (1). 

Squaring of (C.1) according to Sayre (1952) gives 

Fh= ( O/ V){~ ( Fk)p( Fh-k)p + ~,k (Fk)q(Fh-k)q 

+ 2 ~'k ( F~,lp(Fh--k) q } (C.3) 

where 0 denotes the ratio of the averaged scattering 
factors to the squared ones. Since pp and pq are 
supposed to be uncorrelated, in (C.1) it may be 
assumed that pp(r)pq(r)=O, so that in (C.3) the 
summation Y~k(FOp(Fh_k)q is expected to be 
vanishing. 

Therefore, (C3)  reduces to 

Fh'" ( O/ V){~ k ( Fk)p( Fh-k)P + ~ k ( Fk)q( Fh-k)q). 

(C.4) 

In accordance with Jeffery (1964), the values of the 
superstructure reflexions depend only on pq while 
substructure reflexions depend both on p, and pq. If  
Fh in (C.4) is a superstructure reflexion, then its value 
is only fixed by the contribution ~k (Fk)q(Fh-k)q and 
(C.4) reduces to 

Fh~--(O/V) E (Fk)q(Fh-k)q. (C.5) 
k 

Both (Fk)q and (Fh-k)q are known in practice only 
when k and h - k  correspond to superstructure 
reflexions. When k or h - k  refer to substructure 
reflexions then (Fk) q and (Fh_k) q are parts of F k and 
Fh-k, unknown but essential for securing Sayre's 
equation (C.5) to be satisfied. Statistically speaking 
the average  ((Fk)q(Fh_k)q) relative to 'super-super '  
pairs is expected to be nearly equal to the averages 
relative to 'super-sub'  or 'sub-sub'  pairs. Con- 
sequently, the contributions FkFh-k relative to 'sub- 
sub' pairs are expected to be more sparsely spread 
around Fh than the contributions FkFh-k relative to 
'sub-super '  pairs. In their turn these are expected to 
be more sparsely spread around Fh than the contribu- 
tions FkFh_ k-- (Fk)q(Fh-k)q relative to 'super-super '  
pairs. That agrees well with our theoretical results 
according to which 

(Nh,k)2 > (Nh,k) 1 > (Nu,k)o. 

From the point of view introduced in this Appendix, 
the factors (Nh.k)0, (Nh.k),, (Nh,k)2 involved in (4), 
(5), (6) appear to be nothing but statistical coefficients 
generated by a procedure aimed at applying a Coch- 
ran-like approach to the unknown moduli IFhlq, IFklq 
IFb-klq hidden in the known moduli lEd, lEd, I fh-kl'. 
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Abstract 

The probabilistic approach has been extensively used 
for analysing the statistical meanings of some tradi- 
tional figures of merit. New figures of merit have also 
been introduced; some exploit one-phase and two- 
phase structure seminvariants of the first rank, the 
expected negative and/or  enantiomorph-sensitive 
triplet invariants, and the expected negative and/or  
enantiomorph-sensitive quartets. Other figures of 
merit exploit the distribution of statistical parameters 
connected with PSI(0) and active triplets. A new 
combined figure of merit is shown to be a powerful 
tool for selecting the correct solutions among the 
various sets output by multisolution methods. 

1. Introduction 

For the determination of very complex structures by 
direct methods a large initial set of known phases 
seems to be a basic requirement. This aim can be 
achieved by introducing a large number of permut- 
able phases which are used to generate different phase 
sets. Magic integer sequences (Main, 1977) are often 
employed for phase permutations: a relatively large 
number of phase sets are thereby created among 
which the correct solutions have to be found. Figures 
of merit (FOM) are usually used to screen the set of 
solutions, prior to computing Fourier transforms (E 
map). 

0108-7673/87/010022-08501.50 

In general, FOM's are functions based on quan- 
tities which can be expected to have extreme values 
for the correct solution. The expectation relies on a 
probabilistic background and/or on algebraic proper- 
ties. In the SIR program (Nunzi et al., 1984), several 
low-order structure seminvariants and invariants 
are estimated by means of representation theory 
(Giacovazzo, 1977, 1980a). Some of them are actively 
used for phase expansion and refinement, others are 
only employed to compute the FOM's. Since one or 
more FOM's are available for each type of structure 
seminvariant or invariant, the combined figure of 
merit CPHASE, based on a variety of FOM's, is 
expected to be effective in finding the correct solution 
[see Ha~ek, Schenk, Kiers & Schagen (1985) for some 
tests of distribution-fitting methods for centrosym- 
metric structures]. 

A probabilistic approach is also introduced which 
enables us to analyse the statistical meanings of some 
traditionally widely used FOM's. New effective 
figures of merit are devised which, combined with 
CPHASE, give rise to a reliable total combined figure 
of merit CFOM which is expected to be unity for the 
correct solutions. 

2. The combined figure of merit CPHASE 

Overbeek & Schenk (1976) first proposed a FOM 
based on ~l relationships. In the SIR program the 
estimates of the one-phase structure seminvariants of 
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